
各位老铁们好,相信很多人对专升本考试:二重积分都不是特别的了解,因此呢,今天就来为大家分享下关于专升本考试:二重积分以及专升本求积分 *** 例题的问题知识,还望可以帮助大家,解决大家的一些困惑,下面一起来看看吧!
一、专升本考试:微积分重点内容及常见类型
【专升本快速报名和免费咨询:】微积分重点内容:
一、多元函数(主要是二元、三元)的偏导数和全微分概念
二、偏导数和全微分的计算,尤其是求复合函数的二阶偏导数及隐函数的偏导数
三、方向导数和梯度(只对数学一要求)
四、多元函数微分在几何上的应用(只对数学一要求)
五、多元函数的极值和条件极值。
1.求二元、三元函数的偏导数、全微分。
2.求复全函数的二阶偏导数隐函数的一阶、二阶偏导数。
3.求二元、三元函数的方向导数和梯度。
4.求空间曲线的切线与法平面方程,求曲面的切平面和法线方程。
5.多元函数的极值在几何、物理与经济上的应用题。
第4类题型,是多元函数的微分学与前一章向量代数与空间解析几何的综合题,应结合起来复习。
极值应用题多要用到其他领域的知识,特别是在经济学上的应用涉及到经济学上的一些概念和规律,读者在复习时要引起注意。一元函数微分学在微积分中占有极重要的位置,内容多,影响深远,在后面绝大多数章节要涉及到它。
1.概念部分,重点有导数和微分的定义,特别要会利用导数定义讲座分段函数在分界点的可导性,高阶导数,可导与连续的关系
2.运算部分,重点是基本初等函的导数、微分公式,四则运算的导数、微分公式以及反函数、隐函数和由参数方程确定的函数的求导公式等
3.理论部分,重点是罗尔定理,拉格朗日中值定理,柯西中值定理
4.应用部分,重点是利用导数研究函数的性态(包括函数的单调性与极值,函数图形的凹凸性与拐点,渐近线), *** 值应用题,利用洛必达法则求极限,以及导数在经济领域的应用,如"弹性"、"边际"等等。
1.求给定函数的导数或微分(包括高阶段导数),包括隐函数和由参数方程
2.利用罗尔定理,拉格朗定理,拉格朗日中值定理,柯西中值定理证明有关命题和不等式,如"证明在开区间至少存在一点满足……",或讨论方程在给定区间内的根的个数等。
此类题的证明,经常要构造辅助函数,而辅助函数的构造技巧性较强,要求读者既能从题目所给条件进行分析推导逐步引出所需的辅助函数,也能从所需证明的结论(或其变形)出发"递推"出所要构造的辅函数,此外,在证明中还经常用到函数的单调性判断和连续数的介值定理等。
3.利用洛必达法则求七种未定型的极限。
4.几何、物理、经济等方面的 *** 大值、 *** 小值应用题,解这类问题,主要是确定目标函数和约束条件,判定所论区间。
5.利用导数研究函数性态和描绘函数图像,等等。
专升本有疑问、不知道如何总结专升本考点内容、不清楚专升本报名当地政策,点击底部咨询官网,免费领取复习资料:
二、专升本的高数到底该怎么学
专升本的高数到底该怎么学?好的数学复习 *** ,可以让数学成绩倍增。为了让大加能考出优异的成绩,整理了几个专升本的高数学习 *** ,供大家参考。
《高等数学》本身就是数学和其他学科的基础,而《高等数学》又有一些重要的基础内容,它关系到整个知识结构的全局。以微积分部分为例,极限贯穿着整个微积分,函数的连续性及性质贯穿着后面一系列定理结论,初等函数求导法及积分法关系到今后各个学科。
《高等数学》归类 *** 可按内容和 *** 两部分小结,以代表性问题为例辅以说明。在归类小节时,要特别注意有基础内容派生出来的一些结论,即所谓一些中间结果,这些结果常常在一些典型例题和习题上出现,如果你能多掌握一些中间结果,则解决一般问题和综合训练题就会感到轻松。
实践证明,在教师指导下,抓准一本参考书,精读到底,如果你能熟读了一本有代表性的参考书,再看其它参考书就会迎刃而解了。
数学的 *** 和理论的掌握,常常需要做到熟能生巧、触类旁通。人不可能通过一次学习就掌握所学的知识,需要有几个反复。
1.书:课本+习题集(必备),因为学好数学 *** 离不开多做题,准备一个错题本,把经常做错的题记到一个本子上,这样等到再次复习的时候才方便查看。
2.笔记:尽量有,笔记不是指原封不动的抄板书,那样没意思,而且不必非单独用个小本,可记在书上。关键是在笔记上一定要有自己对每一章知识的总结,类似于一个提纲,(有时老师或参考书上有,可以参考), *** 好还有各种题型+ *** +易错点。
3.上课:建议 *** 好预习后听,听不懂不要紧,很多大学的课程都是靠课下结合老师的笔记自己重新看。但是记住:高数千万别搞考前突击, *** 行不通,所以平时你就要跟上,步步尽量别断层。
自考/成考有疑问、不知道如何总结自考/成考考点内容、不清楚自考/成考报名当地政策,点击底部咨询官网,免费领取复习资料:
三、专升本考试:二重积分
【专升本快速报名和免费咨询:】二重积分
曲顶柱体的体积曲面的面积(A=∫∫√[1+f2x(x,y)+f2y(x,y)]dσ)
平面薄片的质量平面薄片的重心坐标(x=1/A∫∫xdσ,y=1/A∫∫ydσ;其中A=∫∫dσ为闭区域D的面积。
平面薄片的转动惯量(Ix=∫∫y2ρ(x,y)dσ,Iy=∫∫x2ρ(x,y)dσ;其中ρ(x,y)为在点(x,y)处的密度。
当f(x,y)在闭区域D上连续时,极限存在,故函数f(x,y)在D上的二重积分必定存在。
如果在D上,f(x,y)≤ψ(x,y),则有不等式∫∫f(x,y)dxdy≤∫∫ψ(x,y)dxdy,特殊地由于-|f(x,y)|≤f(x,y)≤|f(x,y)|又有不等式|∫∫f(x,y)dxdy|≤∫∫|f(x,y)|dxdy.性质设M,m分别是f(x,y)在闭区域D上的 *** 大值和 *** 小值,σ是D的面积,则有mσ≤∫∫f(x,y)dσ≤Mσ。
专升本有疑问、不知道如何总结专升本考点内容、不清楚专升本报名当地政策,点击底部咨询官网,免费领取复习资料:
四、专升本三重积分考什么
1、不考,专升本中主要考的是微积分。
2、专升本考试是指大学专科层次学生进入本科层次阶段学习的选拔考试,是中国大陆教育体制大专层次学生升入本科院校的考试制度。
3、专升本分为两种类型:之一类是普通高等教育专升本(亦称统招专升本),考试对象仅限于各省、直辖市、全日制普通高校(统招入学)的专科应届毕业生。
4、个别省份的命名有所差别,如河北省称为普通高校专接本,广东省称为普通高校专插本,江苏省称为普通高校专转本,其余省份皆称为普通高校专升本。
5、第二类是成人高等教育专升本,其拥有四种途径:包括自考专升本、成人高考专升本(分业余和函授两种学习方式)、 *** 教育专升本(远程教育)、开放大学(原广播电视大学)专升本。
专升本考试:二重积分和专升本求积分 *** 例题的问题分享结束啦,以上的文章解决了您的问题吗?欢迎您下次再来哦!